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NOTATION

b Span of a wing

C,» C, Functional constants in Equation (32)

E Viscous correction in Equation (33)

h,, hy Scale factors for curvilinear coordinates § and B,
respectively; hg is also called equivalent radius

53 Equal to hy/R,

L A length segment

M Mach number

P Static pressure

Ro Nose radius

T ) Body radius measured from body axis
Distance along a streamline measured from the stagnation
point

§ Equal to S/Ry

u,v Inviscid velocity components in (x,@) coordinates

u, Velocity at the edge of boundary layer

Vg, Free-stream velocity

Vys V5, V; Velocity components in curvilinear coordinates §, B, (

x, 9, 2 Body-oriented orthogonal coordinates

x Equal to x/Rg

o Angle of attack

% Effective ratio of specific heats after shock

8 Angle between the tangent to a local streamline and the
radial line

g€, B, C Streamline~oriented, orthogonal, curvilinear coordinates

p Density

Subscripts

e At the edge of boundary layer
o Stagnation conditions at the edge of boundary layer
® Undisturbed, free-stream condition
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ABSTRACT

An exact method has been developed for determining the
streamline geometry and equivalent radius (fhe scale factor
for the normal coordinate in a streamwise coordinate system)
over A flat delta wing with cylindrical leading edge at angles
of attack. This method requires a knowledge 6f the surface
inviscid pressure distribution, either theoretical or
experimental. With the aid of the present method, three-
dimensional hypersonic heat transfer can be simply calculated
through the axisymmetric analogue. ”

Results are presented for flat delta wings traveling at
hypersonic speeds and at various angles of attack. Calculated
results indicate that the streamline geometry depends heavily
on pressure distribution used in the calculation. The present
method gives better correlation with experimental data than

does the perturbation method.
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INTRODUCTION

The calculation of three-dimensional viscous flows can be substantially
simplified by using streamwise coordinates. This has become a popular
procedure for computing hypersonic heat transfer to bodies at an angle of
attack.l-G* The most obvious difficulty is how to determine the three-
dimensional inviscid streamline pattern and its inherent equivalent radius.

The available literature contains a few analys.es‘ for obtaining the

inviscid streamline geomel:ry.l"h9

frevious work by the present author9
provides the most straightforward method. It gives exact equations for
determining the surface streamline pattern and equivalent radius over
bodies of revolution at an angle of attack. The method requires knowledge
of the pressure distribution, either theoretical or experimental. It has
been successfully applied to cases covering hypersonic laminar and turbulent
heat transfer to bodies of revolution at particular angles of attack.

In an exfension of previous work, this report describes a method
developed for determining the streamline geometry and equivalent radius
over a flat delta wing with cylindrical leading edge at an angle of attack.
Results are presented for the cases of a flat delta wing and a cylindrical

leading edge at hypersonic speeds.

ANALYSIS

COORDINATE SYSTEMS

Two coordinate systems were used:
1.’ The body-oriented orthogonal system with coordinates x, ¢, and z.
For this system,

dL® = dx® + (xdg)® + dz®

2. The streamwise orthogonal system with coordinates &, B, and {. For

this system,

2

dL® = (h,d€)® + (hgdB)® + dC°

They are shown in Figures 1 and 2.

*References are listed on page 21.



The body-oriented orthogonal coordinates (x,@,z) are employed as a
reference frame upon which the three-dimensional inviscid flow equations
are written. (Note that the z-coordinate is always zero at body surface.)
The streamwise surface coordinates (E,B,{) are calculated in terms of body
coordinates x and ¢. The scale factor hy for the P coordinate must also
be calculated along with the streamline geometry. Since the scale factor
hy appears in the three-dimensional flow, equations written in streamwise
coordinates correspond to the radius for an axisymmetric system; it is

referred to here as "equivalent radius" to give more physical meaning.

EQUATIONS FOR STREAMLINE GEOMETRY
In body-oriented orthogonal coordinates, the inviscid momentum

equations along the surface of a general three-dimensional body are:

X-momentum
du v ¥ _ 1l ®
' Y x Y x - p Ox ’ (1)
, ¢-momentum
X L vy w13k )
ox X op x px o9

where x is the distance along the body surface of a constant ¢ plane and
@ is the azimuthal angle measured from a reference position. It is
convenient to measure ¢ from the leading edge if the streamline pattern
is a converging flow or from the centerline if it is a diverging flow
(see Figure 1). The velocity components u and v are measured along the
surface in the x and ¢ directions, respectively, and P is the static
pressure. ‘

The geometry of any streamline emanating from the stagnation point
may be expressed as ¢ = ¢(x,B); here B is constant along a streamline.

The coordinates are related to the velocity components through the

relation
x d v '
= u ®



7 Defining D/Dx as the substantial derivative, or derivative along a

streamline, Equation (3) can be written in the form

Dx xu | 4

Differentiating the above equation with respect to x yields

X . gD
D¢ _ 1 |_Dx Dx _ ¥ | (5)
Dxa x ua Xu
Since u = u(x,9), then
_ Ou du
Du = = Dx + 33D¢

and using Equation (4), the above expression can be written as

Du _ u v
o = T s _ (6)

Using this result in Equation (1), one gets

‘Du _ 1fv® 12 eh)
Dx u\x p ox
In a similar manner, Equation (2) gives
Dv 1 1 op
o - -;(uv + E%) -(8)

Since V° = ?M?P/p, it follows that
2 Wp 1

* e 3)” Y

Substituting Equations (7) through (9) into Equation (5) with the aid

of Equation (4), one obtains

[

) 1 ;1 Dg P 2\ |, . Dg\?
- Ly (PR E a_¢>L”(x”""]
L - .
10
2. - (-2 @0



Although Equation (10) is appropriate for calculating the streamline
location in terms of x and ¢, it must be recast into a first-order

equation for the following reasons:

1. It is a second-order equation to which the solution ¢ = ¢(x) along
a streamline is obtained through double integration and the accumulated
error in numerical integration will be greater than a first-order one.
2 Further differentiation will be involved in dg?iving the equations for
equivalent radius, and it is convenient to use a first-order equation as
the basic differential equation.

Accordingly, a new variable 0, the angle between the tangent of local
streamline and x-axis, is given by the relation

o = tan’! (ﬁ\ = tan? (x -g—x@) (11)

Differentiating Equation (11) with respect to x along a streamline and

rearranging, one finds that

ng = . 1 ‘ Bg - tan 9 (12)
Dx* x cos?® Dx x2

The differential equation for determining the local direction of a

streamline is found by equating Equations (10) and (12) and rearranging:

) 1 oP 1 3P tan 9
- = = ltanf-—- - === ) - — 13
Dx wﬁp(an 3x xa¢> X (3
Also from Equation (11),
D¢ _ tan 6
Dx - % ; (14)

Equations (13) and (14) are valid along a streamline and so they can
be integrated simultaneously to determine the géometry of a chosen stream-
line € = 0(x) and ¢ = ¢(x). However, the derivatives D@/Dx and DB/Dx
Become infinite when 6 = 90 degrees.  In connection with these infinite
derivatives, it is helpful to rewrite Equations (13) and (14) by using
S (the distance measured along a streamline) as an independent variable

instead of x. Accordingly, along a streamline:

D¢ _ D¢ Dx
DS Dx DS



Since

Dx
DS = cos ©
therefore
sinb
%g = % (15)

and Equation (13) becomes

(16)

pe _ _1 OP _ cosf 3P sin®
2+ L (e e ) e

As a result of the change of the independent variables, x now
becomes a dependent variable. Hence, x can be calculated simultaneously

with © and ¢ from the relation:

%g = cos © » (17)
Equations (15), (16), and (17) constitute a set of simultaneous,

first-order, ordinary differential equations for determining the geometry

of a chosen streamline from a known pressure distribution. The integration

gives different streamlines for different initial conditions.

EQUATIONS FOR EQUIVALENT RADIUS

The previous section provided the necessary equations for determining
the streamline geometry. However, a very important and essential variable,
namely, the equivalent radius, has to be determined in order to calculate
the three-dimensional heat transfer using "axisymmetric analogue." It is
the scale factor of the coordinaté normal to the streamline in the stream-

wise system. Physically, it is a measure of the spreading distance
between two adjacent streamlines. ‘
" The desired new system (§,B) is also orthogonal, as mentioned

previously. The two systems are related analytically. Thus,

x= x(5.8), 9= 88 (18)



Their differentials are

- X &
dx = 52 d§ + 55 dB
a6 = Bage + B gp
13 OB

Also with the aid of the following sketch,

d
hadB g 9

h,d§

“' e dx

 J

one finds that:

dx = h;cos® d§ - hysin® df
hlsine hacose
dg = - d§ + ” dB

(19a)

(19b)

(20a)

(20b)

Equating the coefficients in Equations (19) and (20), it follows that

x _

SE = hlcose
Ox

== . ind
) h231n
22 hlsine
9 - x

92 _ hzcose
o x

(21a)

(21b)

(21c)

(21d)



Since x = x(§,B) and ¢ (§,B), then

d3°x ‘- 3?5_ 22a
WL - LB (222)
= -l B (22b)
B of of op ‘
For Equation (22a)
%E(%%> = cos® %%l - h;sin® %%
%E(%xﬁ) = -sinf .:_23. -~ hgcos8 %%
.Equating the right-hand sides of the above two equations gives
1 ahz ae hacote a8 cot® ah1 2
hy 3F 3 - T B, 3% ° Th; P (23)
For Equation (22b):
a -a-g\)- sin® ahl h].COSG 59 + hlthinze
B\¢E/)”T “x W T Tx b =
and
3 EQ cos8 aha hgsin 036 hlhgcosae
‘a'§<aa> T X ¥ T T ® T T
Equating the right-hand sides of the above two equations gives
oh; _ 2o ©ohg _ h %8 h ‘98 _ hyhg
B cot™@ 14 3B 2 og x sin@
Substituting the above equation into Equation (23) and simplifying, one
obtains along a streamline ' . -
Dh ch : h 0.
Dhp _ 1 %y _ 30 hgcos (24)

DS hy OF ¥ x



The term (38/3B) in Equation (24) is obtained by differentiating
Equation (16) with respect to B letting

P _ e |
OB 0§  3E o (25)
The result is as follows:
p() _ 1 2 (ee) _ 2 Me), 1 pem
DsS\d8/ = h, OE\oB/ =  3B\DS, h, DS 0B
or '
D (98) _ 1 cos8 P + sin® OP\  cosf|38

D6 (DB . sin® sin°9

2 2
+ L sineea—-P- - sin@cos@(2 P - i;%;—)

"
+ cos®6 °p + 2-M° . o OP _ cos8 _33\2 > (26)

sing >
x? d¢g° YMP x

X a¢/
EQUATIONS FOR CYLINDRICAL LEADING EDGE

It is necessary to employ other body coordinates (x,¢) for the
cylindrical leading edge (see Figure 3). Following the same procedure,

the differential equations for the streamline geometry are:

Dx

- | 27
53 cos® 27
Dg _ sin®
= - = 28)
DO 1 / R JP cos9 op
—_— _— —_ . or - .
DS S \S1n9 = r 30 > (29) .



Those for the equivalent radius are:

D (28 _ _1 oP , sin6 3P\ 28
DS (E'E‘) ("“9?&* T 'Tp)a‘a'

W
3 2
- hﬂ Si.nas i_g - sin28 a P

ox r oPox

UlU
wnio

25 23 : ‘ 2
+c059_6__13_}+2-Ma(sine§_g_coseaP> -ha(

§
) (31)

ESTIMATION OF SURFACE PRESSURE DISTRIBUTION

As indicated in the previous analysis, the surface pressure
distribution must be- known in order to calculate the streamline geometry
and équivalent radius. Two pressure estimation techniques are used for the

flat delta wing surface. The first is the Newtonian-conical flow theory

given by Hida10

P .
B T C; + Cgtan®p 32)

where C; and C, are functions of Mb; o, and the span b. Determination
of C; and C; involves rather lengthy manipulation and thus it will not
be repeated here. At a small angle of attack where C; is negative,
streamlines converge to the center. When the angle of attack is large,
C, becomes positive, which in turn, forms a diverging streamline pattern.

This phenomenon agrees qualitatively with experimental results.

The second pressure estimation technique is that of Creager11

as modified by Buck and Mchaughlin.12

10



, P = (%surf. inclin. + Pshock curv,> ( 1+ EViscous ) (33)

where -

F (a) Pressure after oblique shock for
small angle of attack
(shock attached)

Psurf inclin.

(b) Pressure by modified Newtonian
- for large angle of attack
(shock detached)

Pshock curv. =  Pressure from blast wave theory

Eviscous =  Correction due to boundary layer displacement

The details are found in Reference 12. However, this expression
does not give diverging flow patterns at any angle of attack.

As suggested in Reference 12, an empirical expression for pressure
distribution (from Gregorek13) was used for the cylindrical leading

edge. Thus:

%%- 0.32 + 0.455 cos @ + 0.195 cos 2¢ + 0.035 cos 3@
o]

- 0.005 cos 4¢ (34)

This expression is good for hypersonic flows.

A flat delta wing with cylin&rical leading edges normally has a
blunt nose. The nose may be a body of revolution, a blunted cone, or
simply a shperical cap. The aerodynamic stagnation point lies on the
nose from which streamlines emanate. Therefore, if the flow pattern
is a converging one (see Figure 1, Case I), the streamline geometry and

the equivalent radius must be calculated first for the nose region, then

11



for the leading edge, and finally for the delta wing surface. The
sequence for a diverging flow (Case TI) is nose first, then wing surface,
and finally leading edge. The simplest nose configuration is a spherical
cap. An exact geometric solution of the streamlinelgeometry and
equivalent radius can be obtained merely through transformation-of
coordinates; see the Appendix. The method given in Reference 9 is
appropriate for other nose configurations such as a blunted body of

revolution.

RESULTS AND DISCUSSION
Figures 4-6 show calculated streamline geometries over the windward
side of flat delta wings with a cylindrical leading edge under hypersonic
flow conditions at different angles of attack. The flow conditions were:
chosen to permit comparison with available theoretical and experimeﬁtal
data.

‘Figure 4 gives results for the case of a 75 degree swept delta wing
at M_ = 9.6 and o = 30 and 60 degrees.. The Newtonian-conical pressure
was ﬁsed for the present method. At o = 30 degrees, it yielded a
converging streamline pattern. As the angle of attack increased,

a = 60 degrees, the flow shifted toward a divefging pattern. Figure 4

14 and

also indicates results for the perturbation method of Polak and Li
for experimental data taken by Bertram and Henderson.15 Note that the
present method shows better agreement with the experimental data than does
the perturbation method.

The extent to which results depend on the pressure distributions
utilized in calculations is demonstrated by Figure 5 which shows streamline
patterns over a 60 degree swept delta wing at M, = 8.0 and o = 30 degrees
obtained by two different techniques for estimating pressure: (1) the
Newtonian-conical pressure (Equation (32)) and (2) the hybrid pressure
(Equation (33)). Quite different streamline patterns were obtained even
under the same flow condition. The difference became larger near the
éxis of symmetry of the wing. Physically it is impossible for any
streamline to cross the axis of symmetry. The étreamlines given by the
Newtonian-conical pressure appear to cross that line because a finite

pressure gradient in the ¢ direction still exists at the axis of symmetry.

12



(This particular drawback of the Newtonian-conical theory ought to be
eliminated.)

The streamlines shown in Figure 5 come from the cylindrical leading
edge of the wing. Figure 6 gives results for this portion of the surface
as obtained from the present method using the empirical pressure
distribution (Equation (34)). The flow conditions are the same as in
Figure 5. As a consequence of the angle of attack, the ¢ = 30 degree
line on the cylinder becomes the margin that divides the windward and
leeward sides. Streamlines lying above that dividing line will run
into the windward side of the wing; all others will go to the leeward
side. The results on this cylindrical leading edge provide the starting

»condit@bns for integration along the wing surface.

The equivalent radius can also be easily calculated with the same
pressure distribution as used for the streamline geometry. The
equivalent radius and its associated application to hypersonic heat

transfer has been computed by Sackéf

CONCLUSIONS

The following conclusions are drawn from the present study:

1. Calculations of streamline geometry depend heavily on the
pressure distribution used. The more realistic the pressure distribution,
the more exact the method.

2. The streamline geometry obtained from the present method using
the Newtonian-conical pressure for a flat delta wing at hypersonic speeds
correlates better with experimental data than does that obtained by the

perturbation method.

*Reported informally in NSRDC Tech Note AL-203
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APPENDIX

GEOMETRIC SOLUTION FOR A SPHERICAL CAP

With the aid of the following sketch,

point most
windward

line

Reference 9 showed that:

Center
of
sphere

30°
t‘e¢§}
S

meridian
line

X% = Arccos(cos® cos S ~ sin® sin S cosB)

x* = 1 - cos x

sin §'sin8)

$ = Arcsin( oin =
0 = Arcsin(gi&gizgg%
sin x
and
h2 = sin §
where h
T-X - 5.8 4% =-2
X=g» X R S R and h2 R
e} (] o o

14

(a-1)

(A-2)

(a-3)

(a-4)

(A-5)



Figure la - Case I - Converging Flow Pattern

xdg,v

8 dS = h;dE

Figure 1b - Case II - Diverging Flow Pattern

Figure 1 - Coordinate Systems for Flat Delta Wing
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